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Particle Filtering Framework for a Class of

Randomized Optimization Algorithms

Enlu Zhou, Michael C. Fu, and Steven I. Marcus

Abstract

We reformulate a deterministic optimization problem as a filtering problem, where the goal is to

compute the conditional distribution of the unobserved state given the observation history. We prove

that in our formulation the conditional distribution converges asymptotically to a degenerate distribution

concentrated on the global optimum. Hence, the goal of searching for the global optimum can be achieved

by computing the conditional distribution. Since this computation is often analytically intractable, we

approximate it by particle filtering, a class of sequential Monte Carlo methods for filtering, which

has proven convergence in “tracking” the conditional distribution. The resultant algorithmic framework

unifies some randomized optimization algorithms and provides new insights into their connection.

I. INTRODUCTION

Global optimization problems arise in many areas of importance and can be extremely difficult

to solve, due to the presence of multiple local optimal solutions and the lack of structural

properties such as differentiability and convexity. In a general setting, there is little problem-

specific knowledge that can be exploited in searching for improved solutions, and it is often the

case that the objective function can only be assessed through “black-box” evaluation, which

returns the function value for a specified candidate solution. Many randomized algorithms
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have been proposed for such optimization problems, such as genetic algorithms [6], simulated

annealing [18], random search algorithms [19], the nested partitions method [17], the estimation

of distribution algorithms in evolutionary computing [11], cross-entropy method [10], model

reference adaptive search [7], and sequential Monte Carlo simulated annealing [21].

To tackle such global optimization problems, our main idea is to reformulate the optimization

problem as a filtering problem, which is then solved by particle filtering. The idea comes from

viewing the optimal solution as the unobserved state of a dynamic system and sample function

values as noisy observations of the optimal function value (hence noisy observations of the

unobserved state). The goal of filtering is to compute the filtering distribution, which is the

conditional distribution of the unobserved state given the observation history. With an appropriate

choice of the dynamic system model for the associated optimization problem, we prove that

the filtering distribution converges asymptotically to a degenerate distribution concentrated on

the optimal solution. Therefore, the task of searching for the optimal solution can be carried

out through the procedure of estimating the filtering distribution sequentially. Since the filtering

distribution does not have a closed-form expression in general, we apply particle filtering methods

[4], a class of sequential Monte Carlo methods, to approximate the filtering distribution. Particle

filtering has proven convergence to the filtering distribution under various conditions [3, 13],

and has also shown good performance in practice.

Our approach results in a framework that includes many randomized optimization algorithms

that are known as model-based optimization methods [24]. The key idea of these algorithms

is to iteratively repeat two steps: 1) generate candidate solutions from a sampling distribution

over the solution space; 2) update the sampling distribution using the candidate solutions. The

hope is that the sampling distribution becomes more and more concentrated on the promising

regions of the solution space and eventually converges to a degenerate distribution on the

optimal solution. Therefore, the design of these randomized optimization algorithms involves

two issues: (i) how to choose the sequence of sampling distributions; and (ii) how to sample

from this sequence of distributions. In the particle filtering framework, the sequence of sampling

distributions is the sequence of filtering distributions specified by the dynamic system model,

and the sampling method is the sequential Monte Carlo (particle filtering) method. Some recent

randomized optimization algorithms, including the estimation of distribution algorithms (EDAs),

the cross-entropy (CE) method, and model reference adaptive search (MRAS), fall into our
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particle filtering framework, and interesting insights between them are revealed.

Some previous works have explored the connection between filtering and optimization, such as

[12], [8], and our own preliminary conference version [22]. In particular, [12] and [8] use Kalman

filter and particle filtering, respectively, to guide the movement of the particles in particle swarm

optimization (PSO); however, while these algorithms improve on many other PSO algorithms

empirically, they lack a convergence guarantee. From the sampling perspective, the Sequential

Monte Carlo (SMC) sampler, which is essentially the sampling technique underlying particle

filtering, can be used for optimization [14, 13]. However, to apply the SMC sampler requires

artificially constructing a sequence of distributions with a sophisticated choice of forward and

backward transition kernels. Our idea is distinct in that it explicitly reformulates an optimiza-

tion problem as a filtering problem, which naturally leads to a desired sequence of filtering

distributions that has proven convergence to the global optimal solution.

II. FILTERING FOR OPTIMIZATION

The filtering problem involves the estimation of a state that is not directly observed in

a dynamic system from the noisy observations of the system. The filtering density can be

computed recursively when each new observation arrives sequentially in time. Filtering bears

great similarity to the process of searching for the optimum using a randomized optimization

algorithm: the optimum, which can be viewed as the unobserved state of a system, is recursively

estimated through the function values of the candidate solutions that are generated according

to some randomized mechanism. The function values can be viewed as noisy observations of

the optimal function value. Intuitively, the more function values observed, the more information

is obtained about the unobserved state. The hope is that the filtering density will eventually

converge to a Dirac delta function concentrated on the true value of the unobserved state, i.e.,

the optimum. We formalize this intuition in the rest of this section.

Consider the global optimization problem:

x∗ = arg max
x∈X

H(x), (1)

where the solution space X is a nonempty compact set in Rn, and H : X → R is a deterministic

function that is bounded, i.e., ∃Hlb > −∞, Hub < ∞ s.t. Hlb ≤ H(x) ≤ Hub, ∀x ∈ X . We

assume that (1) has a unique global optimal solution, i.e., ∃x∗ ∈ X s.t. H(x) < H(x∗), ∀x 6= x∗,

x ∈ X . We will use the shorthand notation H∗ to denote H(x∗).
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A filtering problem involves a state-space model:

Xk = f(Xk−1, Uk), k = 1, 2, . . . ,

Yk = h(Xk, Vk), k = 0, 1, . . . , (2)

where for any k, Xk ∈ Rnx is the unobserved state , Yk ∈ Rny is the observation, Uk ∈ Rnu

is the random system noise, and Vk ∈ Rnv is the random observation noise. The goal is to

compute at each time k the filtering distribution of the current state Xk conditional on the past

observations {Y0 = y0, . . . , Yk = yk}, simply denoted as Y0:k = y0:k. Throughout the paper we

assume the filtering distribution admits a density bk. Let F denote the σ-field on the Borel sets

of Rnx . Then bk satisfies

P (Xk ∈ A|Y0:k = y0:k) =

∫
A

bk(x)dx, ∀A ∈ F .

We also define a one-step prediction density bk|k−1 that satisifies

P (Xk ∈ A|Y0:k−1 = y0:k−1) =

∫
A

bk|k−1(x)dx, ∀A ∈ F .

The optimization problem (1) can be viewed as a filtering problem by choosing a state-space

model of the following form:

Xk = Xk−1 + Uk, k = 1, 2, . . . , (3)

Yk = H(Xk)− Vk, k = 1, 2, . . . , (4)

where Xk ∈ Rn, Yk ∈ R, and {Uk, k = 1, 2, . . .} and {Vk, k = 1, 2, . . .} are two independent

sequences of random variables of appropriate dimensions. The sequences {Uk} and {Vk} are

independent of each other and are also independent of X0. We assume a prior density b0 on the

unobserved X0. The transition kernel of (3) (i.e., the distribution of Uk) is denoted by Kk(·|xk−1),

which satisfies P (Xk ∈ A|Xk−1 = xk−1) =
∫
A
Kk(x|xk−1)dx, ∀A ∈ F . The sequence {Vk} is

i.i.d. with probability density function (p.d.f.) ϕ(·), which satisfies the following condition:

(C) The p.d.f. ϕ(·) has support on [0, Hub − Hlb], and is positive, strictly increasing, and

continuous on its support.

Using Bayes’ rule, the filtering density of the state-space model above can be shown to evolve

as:

bk(x) =
ϕ(H(x)− yk)bk|k−1(x)∫
ϕ(H(z)− yk)bk|k−1(z)dz

=
ϕ(H(x)− yk)

∫
Kk(x|xk−1)bk−1(xk−1)dxk−1∫

ϕ(H(z)− yk)(
∫
Kk(z|xk−1)bk−1(xk−1)dxk−1)dz

. (5)
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The intuition of (3)-(4) and (5) and their connection with optimization can be seen easily

in the simple case in which Uk = 0 for all k: the unobserved state {Xk} is constant with the

underlying value being the optimum x∗, which needs to be estimated; the observations {yk},

which are the function values of the candidate solutions generated in a randomized optimization

algorithm, are noisy observations of the optimal function value H∗; the filtering density bk is our

belief about the optimum x∗ at iteration k based on the function values {y0, y1, . . . , yk}. Eqn. (5)

implies that the belief bk is tuned towards the more promising area where H(x) is greater than

yk, since ϕ(H(x)− yk) is positive if H(x) ≥ yk and is zero otherwise. Hence, different choices

of ϕ, the p.d.f. of Vk, in fact lead to different sample selection or weighting schemes in the

algorithm. In the more general case when Uk’s are nonzero, {Xk} is a perturbed process around

the optimum x∗, and eventually settles down at x∗ when the noise Uk gradually dampens down

to zero. Thus, Uk brings in more randomness to the optimization algorithm. To show the formal

results, we first introduce the following assumptions.

Assumption 1: For all x ∈ {y : H(y) < H(x∗)}, the set {z ∈ X : H(z) ≥ H(x)} has strictly

positive Lebesgue measure.

Assumption 2: For any x ∈ X ,
∫
A
Kk(y|x)dy > 0 for any A ∈ F that contains x and has a

positive Lebesgue measure.

Assumption 3: For any fixed x ∈ X ,
∑∞

k=1 |bk−1(x)− bk|k−1(x)| <∞.

Assumption 1 ensures that there is always a positive probability to sample any neighborhood

of the optimum. This assumption is satisfied by most objective functions such as continuous

functions. Assumption 2 ensures that there is a positive transition probability from any point to

its neighborhood. It is satisfied for example by Gaussian kernels, which are often used in the

algorithms. Assumption 3 is consistent with the intuition that the noise {Uk} needs to gradually

dampen down to zero so that the perturbed process {Xk} eventually settles down at x∗, and

furthermore it says that the perturbation has to dampen down fast enough in accordance with

the belief. It guides the choice of the kernel: a sufficient condition on the kernel to ensure

Assumption 3 is that Kk(x|y) ≤ max
{
bk−1(x) + α0

kα
, 1∫
X dx

}
for all y 6= x, where α0 > 0 and

α > 1 . For example, the special case that Kk(x|y) = δ(x− y) leads to bk−1(x) = bk|k−1(x) for

all k and hence satisfies Assumption 3 trivially. This special choice is used in algorithms such

as CE and MRAS, which will be seen later.

Lemma 1: If ϕ satisfies the condition (C), then for an arbitrary and fixed observation sequence
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{y0, y1, . . .}, Ebk [H(X)] ≥ Ebk|k−1
[H(X)].

Proof:

Ebk [H(X)] =
Ebk|k−1

[H(X)ϕ(H(X)− yk)]
Ebk|k−1

[ϕ(H(X)− yk)]
≥ Ebk|k−1

[H(X)]

where the inequality results from the fact that ϕ is monotonically increasing, which implies

Cov(H(X), ϕ(H(X) − yk+1)) ≥ 0. For a proof on the covariance of monotone functions of a

random variable, please refer to pp. 207-208 in [15].

Lemma 1 implies that our estimate Ebk [H(X)] of the optimal function value is improved over

Ebk|k−1
[H(X)] with the information provided by the observation yk. Even though the estimate

Ebk−1
[H(X)] will be perturbed to Ebk|k−1

[H(X)] which might be worse, the perturbation dampens

down fast enough such that eventually the estimate converges to the true optimal function value,

and shown in the following theorem.

Theorem 1: Under Assumptions 1, 2, and 3, if ϕ satisfies the condition (C), then for a

monotonically increasing observation sequence {y0, y1, . . .},

lim
k→∞

Ebk [H(X)] = H∗.

Proof: We first show that limk→∞ Ebk [H(X)] exists. Define ∆k−1 , Ebk−1
[H(X)]−Ebk|k−1

[H(X)].

From Lemma 1, we have Ebk [H(X)] ≥ Ebk−1
[H(X)]−∆k−1. Therefore,

ak , Ebk [H(X)] +
k−1∑
i=0

∆i ≥ Ebk−1
[H(X)] +

k−2∑
i=0

∆i = ak−1, ∀k ≥ 2.

Moreover, {ak} is upper bounded, since for all k ≥ 1, ak ≤ Hub +
∑k−1

i=0 ∆i and

k−1∑
i=0

∆i ≤
k−1∑
i=0

|∆i|

≤
∫
X
H(x)

k∑
i=1

|bi−1(x)− bi|i−1(x)|dx

≤
∫
X
H(x)

∞∑
i=1

|bi−1(x)− bi|i−1(x)|dx <∞,

where the last inequality follows from Assumption 3 and the fact that X is compact. Since

{ak} is monotonically increasing and upper bounded, limk→∞ ak exists. Using the dominated
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convergence theorem, we conclude that
∑∞

i=0 ∆i exists and
∞∑
i=0

∆i =
∞∑
i=1

∫
X
H(x)(bi−1(x)− bi|i−1(x))dx

=

∫
X
H(x)

∞∑
i=1

(bi−1(x)− bi|i−1(x))dx <∞.

Therefore, the limit of the righthand side of Ebk [H(X)] = ak −
∑k−1

i=0 ∆i exists, which implies

that limk→∞ Ebk [H(x)] exists.

Next we show that limk→∞ Ebk [H(x)] is equal to H∗. Since {yk} is monotonically increasing

and upper bounded, it has a limit, denoted by ȳ , limk→∞ yk. There are two cases to consider:

(i) ȳ = H∗; (ii) ȳ < H∗.

(i) For the case ȳ = H∗, we prove by contradiction. Suppose

lim
k→∞

Ebk [H(X)] = H∗ < H∗. (6)

Since ȳ = H∗, there exists a K such that yK > (H∗+H∗)/2. For all k ≥ K, ϕ(H(x)− yk) = 0

for any x ∈ {x ∈ X : H(x) < (H∗ +H∗)/2}, and hence,

bk(x)

 = 0, if x ∈ {x ∈ X : H(x) < (H∗ +H∗)/2};

≥ 0, otherwise.

Therefore, ∫
H(x)bk(x)dx ≥ (H∗ +H∗)/2, ∀k ≥ K.

Taking the limit on both sides gives

lim
k→∞

Ebk [H(x)] ≥ (H∗ +H∗)/2 > H∗,

which is a contradiction with (6).

(ii) For the case ȳ < H∗, we first prove that for any x ∈ Xȳ , {z ∈ X : ȳ ≤ H(z)}, bk(x) > 0

and bk|k−1(x) > 0 for all k. Assumption 1 guarantees that the set Xȳ has a positive Lebesgue

measure. For any fixed x ∈ Xȳ, since ϕ(H(x) − yk) > 0 for all k, bk|k−1(x) > 0 implies that

bk(x) > 0; on the other hand, if bk(x) > 0, then bk+1|k(x) =
∫
Kk(x|xk)bk(xk)dxk > 0, which

follows from Assumption 2. Therefore, given b0(x) > 0, using the argument above iteratively

leads to the conclusion that bk|k−1(x) > 0 and bk(x) > 0 for all k. Furthermore,

Ebk+1|k [ϕ(H(X)− yk+1)] ≥
∫
Xȳ
bk+1|k(x)ϕ(H(x)− yk+1)dx > 0.
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Therefore, by induction bk(x) can be rewritten as

bk(x) = b0(x)
k−1∏
i=0

(
bi+1|i(x)

bi(x)

ϕ(H(x)− yi+1)

Ebi+1|i [ϕ(H(X)− yi+1)]

)
. (7)

Based on this expression of bk, in the following we will prove by contradiction. Assume

limk→∞ Ebk [H(X)] = H∗ < H∗. From this assumption, a trivial argument of contradiction

leads to

B , lim
k→∞

∫
{x:H(x)≤H∗}

bk(x)dx > 0.

We can write

Ebk [ϕ(H(x)− yk+1)]

=

∫
{x:H(x)≤H∗}

ϕ(H(x)− yk+1)bk(x)dx+

∫
{x:H(x)>H∗}

ϕ(H(x)− yk+1)bk(x)dx

≤ ϕ(H∗ − yk+1)

∫
{x:H(x)≤H∗}

bk(x)dx+ ϕ(H∗ − yk+1)

∫
{x:H(x)>H∗}

bk(x)dx.

Thanks to the continuity of ϕ, taking limits on both sides of the inequality above yields

lim
k→∞

Ebk [ϕ(H(x)− yk+1)] ≤ ϕ(H∗ − ȳ)B + ϕ(H∗ − ȳ)(1−B). (8)

Assumption 3 implies limk→∞ |bk(x) − bk+1|k(x)| = 0. Applying the bounded convergence

theorem gives us

lim
k→∞

Ebk [ϕ(H(X)− yk+1)] = lim
k→∞

Ebk+1|k [ϕ(H(X)− yk+1)]. (9)

Using (8) and (9), we have

lim
i→∞

ϕ(H(x)− yi+1)

Ebi+1|i [ϕ(H(X)− yi+1)]

=
limi→∞ ϕ(H(x)− yi+1)

limi→∞ Ebi+1|i [ϕ(H(X)− yi+1)]

=
ϕ(H(x)− ȳ)

limi→∞ Ebi [ϕ(H(X)− yi+1)]

≥ ϕ(H(x)− ȳ)

ϕ(H∗ − ȳ)B + ϕ(H∗ − ȳ)(1−B)
. (10)

Since B > 0 and ϕ is strictly increasing, it follows that

ϕ(H∗ − ȳ)B + ϕ(H∗ − ȳ)(1−B) < ϕ(H∗ − ȳ).
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Hence, by Assumption 1, the set B , {x ∈ Xȳ : ϕ(H∗−ȳ)B+ϕ(H∗−ȳ)(1−B) < ϕ(H(x)−ȳ)}

has a positive Lebesgue measure. For any fixed x ∈ B, following (10) we have

lim
i→∞

ϕ(H(x)− yi+1)

Ebi+1|i [ϕ(H(X)− yi+1)]
> 1. (11)

From Assumption 3, we can easily show that

bi+1|i(x)

bi(x)
→ 1 as i→∞, ∀x ∈ B. (12)

Using (11) and (12), we conclude from (7) that

lim
k→∞

bk(x) =∞, ∀x ∈ B.

Thus, by Fatou’s Lemma, we have

lim inf

∫
X
bk(x)dx ≥ lim inf

∫
B
bk(x)dx ≥

∫
B

lim inf bk(x)dx =∞,

which is a contradiction with
∫
X bk(x)dx = 1. Hence, it follows that limk→∞ Ebk [H(X)] = H∗.

Remark 1: Applying Markov inequality, we have for any ε > 0, P{H∗ − H(Xk) > ε} ≤
H∗−Ebk [H(X)]

ε
→ 0 as k → ∞, where Xk follows the distribution bk. Hence, we conclude that

H(Xk)→ H∗ in probability.

Remark 2: Since any bounded continuous real function ψ with x∗ = maxx∈X ψ(x) satis-

fies the conditions imposed on H , we can follow the same approach above to show that∫
X ψ(x)bk(x)dx → ψ(x∗) as k → ∞, which implies that {bk} converges to the Dirac delta

function concentrated on x∗.

III. PARTICLE FILTERING FOR OPTIMIZATION

Now that we have reformulated an optimization problem as a filtering problem, estimation

of the optimum is equivalent to estimation of the filtering density bk, which evolves according

to (5). A filtering problem in general does not have a closed-form solution except in some rare

cases, such as a linear Gaussian system for which the Kalman filter is the optimal filter. The

intractability is mainly due to the fact that the integral in the recursive equation of the filtering

density, such as eqn. (5), is infinite dimensional. Particle filtering provides a computationally

viable way for approximate filtering. It is a class of Monte-Carlo-based methods that have shown

good performance in many nonlinear/non-Gaussian systems. Hence, we will rely on the particle

filtering methods to develop an algorithmic framework for solving optimization problems.
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Particle filtering approximates bk using a finite number of particles/samples and mimicking the

evolution of the filtering density through the propagation of particles. More specifically, particle

filtering approximates bk by a p.d.f.

b̂k(x) =
N∑
i=1

wikδ(x− xik), (13)

where δ denotes the Dirac delta function, {xik}Ni=1 are the support points, and {wik}Ni=1 are the

associated probabilities/weights. A detailed derivation can be found in [1] that shows how to

draw samples {xik}Ni=1 and calculate their corresponding weights {wik}Ni=1 such that b̂k tracks

bk “closely” with a proven convergence. Below we present a framework for optimization that

is based on the simplest version of particle filtering, which is sometimes also called sequential

importance sampling resampling (SISR) or bootstrap particle filter.

Algorithm 1: Particle Filter framework for Optimization (PFO)

• Step 1: Initialization. Specify an initial p.d.f./p.m.f. b0 defined on X , the transition kernels

{K(·|·)} (i.e., the distributions of {Uk}), and the p.d.f {ϕ(·)} (i.e., the distributions of Vk).

Sample {x̃i0}Ni=1 i.i.d. from b0. Set k = 1.

• Step 2: Importance Sampling. For i = 1, . . . , N , draw xik ∼ Kk(x|x̃ik−1).

• Step 3: Observation Construction. Take yk to be a sample function value H(xik) according

to a certain rule. If k > 1 and yk < yk−1, then set yk := yk−1.

• Step 4: Bayes’ Updating. Compute the normalized weights according to

wik ∝ ϕ(H(xik)− yk), i = 1, 2, . . . , N ;
N∑
i=1

wik = 1.

• Step 5: Resampling. Draw i.i.d. samples {x̃ik}Ni=1 from b̂k(x) =
∑N

i=1 w
i
kδ(x− xik) using

sampling with replacement or approximate sampling methods.

• Step 6: Stopping. If a stopping criterion is satisfied, then stop; else, k ← k + 1 and go to

Step 2.

In the resampling step, several known resampling methods in particle filtering can be used

to generate new candidate solutions and can also be easily implemented, such as the density

projection method [23] and the resample-move method [5]. The density projection method

projects b̂k to a parameterized family of densities {f(·; θ)} to find the best approximation f(·; θk),

and then draws samples {x̃ik}Ni=1 from f(·; θ). The resample-move method applies a Markov chain

Monte Carlo (MCMC) step to move the particles after they are generated by sampling with
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replacement. Depending on the resampling methods, the convergence properties of the different

instantiations of PFO also differ slightly, but all follow from the existing convergence results of

the corresponding particle filters in the literature [23, 2] under suitable assumptions.

The choice of the transition kernel Kk (or in other words, the distribution of Uk) is guided by

Assumption 3. A non-zero Uk may be used to alleviate the problem of premature convergence

in some randomized optimization algorithms that converge too fast and get stuck in some local

optimal solution, because it injects randomness into the algorithm by perturbing the locations

of the candidate solutions. Based on this idea we have proposed an improved version of the

cross-entropy method and carried out numerical comparison. Details are omitted here due to

space limit but can be found in Chapter 5 in [20]. The choice of the p.d.f. ϕ should balance the

trade-off between exploration and exploitation: a more steeply increasing ϕ assigns more weight

to better solutions and hence explores more aggressively around the better solutions, while a

more flat ϕ does the opposite to maintain more exploration over the entire solution space. A

choice commonly used in practice is of the form (14), which in the algorithm essentially assigns

equal weighs to a certain percentage of elite samples and ignores (i.e., assigns zero weight) to

all the other non-elite samples.

The generation of the observations yk is a key difference between filtering and optimization.

In a filtering problem, the observations come from the underlying real system. For example, in

a chemical process, the observations could be the measurements of the temperature or pressure

that are taken from the process. However, in an optimization problem, there is no such real

system, and hence the observation sequence has to be “generated” in a certain way and then is

viewed as if it is given. Lemma 1 and Theorem 1 are proved for a fixed observation sequence,

together with the convergence results for particle filtering conditioned on a fixed observation

sequence [4], implying the convergence of PFO. In fact, the generation of yk is also a design

factor in the algorithm; for example, yk can be set as a sample quantile of the function values

of the candidate solutions generated at iteration k. The setting of a monotonically increasing

sequence {yk} in the algorithm can be understood intuitively, since we have some information

about the true state, i.e., we know that the true state achieves the largest function value. We

exploit this information about the true state by ensuring at each time our estimate is at least as

good as the estimate at the previous iteration.

We end this section with a final remark that the particle filtering framework has the potential for
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guiding the development of new improved algorithms. Besides the various design factors inside

PFO that is based on the simplest version of particle filtering, there are many variations of particle

filtering that can also be adapted to optimization. In particular, a general particle filter does not

have to draw samples according to the transition kernel but rather from an importance density,

which can be chosen appropriately to adjust the trade-off between exploitation of promising

regions of the solution space and exploration of the entire solution space.

IV. A UNIFYING PERSPECTIVE ON EDAS, CE, AND MRAS

The particle filtering framework PFO provides a unifying perspective on some randomized

optimization algorithms: estimation of distribution algorithms (EDAs) [11], the cross entropy

(CE) method [16, 10], and model reference adaptive search (MRAS) [7]. EDAs are a class

of optimization algorithms based on the key idea of iteratively carrying out the two steps: 1)

select elite samples from a pool of samples that are generated from a probability distribution; 2)

estimate the probability distribution of selected samples and generate new samples from it. These

two steps correspond to the Bayes’ updating step and the resampling step in PFO, respectively.

The main difficulty in EDAs is to estimate the distribution of the selected samples, which is done

by expressing the interaction between the underlying variables of a solution via a probabilistic

model. One way used in EDAs is to employ a dynamic Bayesian network (DBN) to represent

such a probabilistic model. Put in the context of PFO, the relationship between the components

of the state vector Xk is expressed through the use of a DBN, and the joint distribution of

the components is bk. Interestingly, there is a particular particle filter designed especially for

DBNs [9], which samples {xik} according to the relationship between its components so that the

sampling is more efficient.

To illustrate CE and MRAS, we make a specific choice of the state-space model (3)-(4). Let

the system noise Uk = 0 for all k, i.e., Kk(x|xk−1) = δ(x− xk−1). Let the observation noise Vk

follow a uniform distribution on [0, Hub −Hlb], i.e.,

ϕ(u) =
I{0 ≤ u ≤ Hub −Hlb}

Hub −Hlb

, (14)

where I{A} denotes the indicator function: I{A} = 1 if A is true and I{A} = 0 otherwise.

Since yk is a sample function value, we always have H(x)− yk ≤ Hub −Hlb; so the indicator

function in (14) reduces to I{0 ≤ H(x) − yk} when u = H(x) − yk. Hence, the recursive
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equation (5) for bk is simplified to

bk(x) =
I{H(x) ≥ yk}bk−1(x)∫
I{H(z) ≥ yk}bk−1(z)dz

. (15)

In PFO, the importance sampling step is essentially omitted with xik = x̃ik−1, and the Bayes’

updating step results in

wik ∝ I{H(xik) ≥ yk}, i = 1, . . . , N. (16)

The standard CE method can be viewed as an instantiation of PFO with the choice of the

state-space model above and the choice of the density projection method in the resampling step.

More specifically, the density projection approach projects b̂k onto a parameterized family of

densities {f(·, θ)} by minimizing the Kullback-Leibler (KL) divergence between b̂k and f(·, θ):

min
θ
DKL(b̂k‖f(·, θ)) =

∫
b̂k(x) log

b̂k(x)

f(x, θ)
dx

= Eb̂k [log b̂k(X)]− Eb̂k [log f(X, θ)].

Since the first term does not depend on f(·, θ), the minimization problem above is equivalent to

maximizing the second term in the last line. By plugging into the second term the expression

b̂k(x) =
∑N

i=1 w
k
i δ(x− xik) with wik satisfying (16), the maximization problem is

θk = arg max
θ

1

N

N∑
i=1

I{H(xik) ≥ yk} log f(xik, θ). (17)

Note that (17) is exactly the parameter updating step in the standard CE method. Then new

samples {x̃ik}Ni=1 (or {xik+1}Ni=1) are drawn from f(·, θk) and used to update the parameter again

as above.

Compared with EDAs, the standard CE method avoids complicated estimation of the density

bk through the use of density projection without the need to specify the relationships among the

components of Xk. However, from a filtering viewpoint, the projection particle filter introduces

a projection error that is accumulated over iterations. The reason can be seen by scrutinizing

the one-step evolution of the approximate density. Since samples {xik}Ni=1 are sampled from

f(·, θk−1), the density that the algorithm actually tries to approximate at iteration k is

b′k(x) =
I{H(x) ≥ yk}f(x, θk−1)∫
I{H(z) ≥ yk}f(z, θk−1)dz

. (18)

Comparing (18) with the expression (15) for bk, bk−1 is replaced by its approximation f(·, θk−1),

which introduces a projection error that is accumulated to the next iteration. This projection error
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can be corrected by taking f(·, θk−1) as an importance density and assigning appropriate weights

to the samples. Specifically, i.i.d. samples {xik}Ni=1 are drawn from f(x, θk−1) to approximate bk;

so according the principle of importance sampling, the weight of each xik should be computed

according to

wik =
bk(x

i
k)

f(xik, θk−1)

∝ I{H(xik) ≥ yk}I{H(xik) ≥ yk−1} . . . I{H(xik) ≥ y1}b0(xik)

f(xik, θk−1)

∝ I{H(xik) ≥ yk}
f(xik, θk−1)

, (19)

where the second line is obtained by applying (15) recursively, and the third line follows from

the fact that {yk} is a nondecreasing sequence and the choice that b0 is a uniform distribution

on X . As shown before, projection of b̂k(x) onto the parameterized family of densities {f(·, θ)}

is equivalent to the maximization problem

max
θ

Eb̂k [log f(·, θ)].

Since b̂k(x) =
∑N

i=1 w
i
k(x− xik) with wik satisfying (19) now, the maximization problem above

can be rewritten as

θk = arg max
θ

N∑
i=1

I{H(xik) ≥ yk}
f(xik, θk−1)

log f(xik, θ). (20)

Note that (20) is exactly the parameter updating equation in the Monte Carlo version of the

MRAS0 algorithm that is presented in [7]. Similarly as in CE, new samples {x̃ik}Ni=1 (or {xik+1}Ni=1)

are drawn from f(·, θk) and used to update the parameter again; the process is repeated iteratively.

Therefore, an instantiation of MRAS falls into the particle filtering framework with a slight

variation.

Remark 3: Note that ϕ of the form (14) used in CE and MRAS does not exactly satisfy

Condition (C) that is used in our theoretical analysis. However, a choice that satisfies Condition

(C) is ϕ(u) = I{0≤u≤Hub−Hlb}
(1+e−Mu)/(

∫
0≤z≤Hub−Hlb

1+e−Mzdz)
, which approaches (14) as M goes to infinity and

is a very close approximation to (14) when M is a large positive number.

V. CONCLUSION

We reformulated a deterministic optimization problem as a filtering problem, for which we

proved that the filtering distribution converges asymptotically to a degenerate distribution concen-

trated on the global optimum. By applying particle filtering methods to this filtering problem, we
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then proposed a framework for randomized optimization algorithms. This framework provides

a unifying perspective on some existing algorithms, including the estimation of distribution

algorithms in evolutionary computing, the cross-entropy method, and model reference adaptive

search. New insights are obtained to reveal the connection between these methods.
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